A Polynomial Inequality Generalising an Integer Inequality

نویسندگان

  • ROGER B. EGGLETON
  • WILLIAM P. GALVIN
  • H. Gauchman
چکیده

For any a := (a1, a2, . . . , an) ∈ (R), we establish inequalities between the two homogeneous polynomials ∆Pa(x, t) := (x + a1t)(x + a2t) · · · (x + ant) − x and Sa(x, y) := a1x+a2xy+ · · ·+any in the positive orthant x, y, t ∈ R. Conditions for ∆Pa(x, t) ≤ tSa(x, y) yield a new proof and broad generalization of the number theoretic inequality that for base b ≥ 2 the sum of all nonempty products of digits of any m ∈ Z never exceeds m, and equality holds exactly when all auxiliary digits are b − 1. Links with an inequality of Bernoulli are also noted. When n ≥ 2 and a is strictly positive, the surface ∆Pa(x, t) = tSa(x, y) lies between the planes y = x + tmax{ai : 1 ≤ i ≤ n − 1} and y = x + tmin{ai : 1 ≤ i ≤ n − 1}. For fixed t ∈ R, we explicitly determine functions α, β, γ, δ of a such that this surface is y = x + αt + βt2x−1 + O(x−2) as x → ∞, and y = γt+ δx+O(x) as x→ 0 + .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoperimetric Functions of Amalgamations of Nilpotent Groups

We consider amalgamations of nitely generated nilpotent groups of class c. We show that doubles satisfy a polynomial isoperimetric inequality of degree 2c. Generalising doubles we introduce non-twisted amalgamations and show that they satisfy a polynomial isoperimetric inequality as well. We give a su cient condition for amalgamations along abelian subgroups to be non-twisted and thereby to sat...

متن کامل

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

Note on the complexity of the mixed-integer hull of a polyhedron

We study the complexity of computing the mixed-integer hull conv(P ∩ Z ×R) of a polyhedron P . Given an inequality description, with one integer variable, the mixed-integer hull can have exponentially many vertices and facets in d. For n, d fixed, we give an algorithm to find the mixed integer hull in polynomial time. Given P = conv(V ) and n fixed, we compute a vertex description of the mixed-...

متن کامل

On the polar derivative of a polynomial

For a polynomial p(z) of degree n, having all zeros in |z|< k, k< 1, Dewan et al [K. K. Dewan, N. Singh and A. Mir, Extension of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl. 352 (2009) 807-815] obtained inequality between the polar derivative of p(z) and maximum modulus of p(z). In this paper we improve and extend the above inequality. Our result generalizes certai...

متن کامل

On a class of mixed-integer sets with a single integer variable

We consider mixed-integer sets defined by a linear system Ax ≥ b plus an integrality requirement on one variable, where A is a totally unimodular matrix with at most two nonzero entries per row. We give a complete linear-inequality description for the convex hull of any set of this type.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002